

Abstract-- In this paper, a real-time 3D video synthesis system

is proposed. The system achieves more real 3D effect by

dynamically adapts the synthesized view to user's viewpoint.

There are two major parts: 6D viewpoint parameter extraction,

and real-time Free-Viewpoint View Synthesis(FVVS). 6D

viewpoint parameter extraction is done by 3D object tracking

over image and depth. Various techniques for FVVS are proposed

and implemented on GPU to achieve real-time. The system is

demonstrated on multi-core system with programmable GPU.

Real-time performance up to 1280×720p with 30fps is achieved.

I. INTRODUCTION

3D technology provides vivid watching experience and is

becoming increasingly available in next-generation consumer

display systems. Many interactive applications such as

interactive gaming and virtual reality also start to support 3D

display. In these applications, user's view position is likely to

change. Synthesized views should also change to match depth

perception from motion parallex and that from stereopsis for

holographic 3D experience. Fixed-disparity rendering systems

cannot provide such experience since disparity does not

change while viewer's position and orientation is changing. To

overcome this problem, the rendered view should be adapted

to user's viewpoint by Free-Viewpoint View

Synthesis(FVVS)[1]. We propose iSense3D, a real-time

viewpoint-aware 3D video synthesis system with free

viewpoint capability. Viewpoint invariant interactive 3D

experience is achieved in this system. Viewer tracking finds

the 6D viewpoint parameters for both eyes by depth-based 3D

face tracking. Videos for both eyes are rendered at real-time

on GPU by FVVS with 6D viewpoint parameters. Various

optimization technique is used. The final system achieves real-

time performance at 1280x720 resolution and 30fps on a 4-

core notebook computer with programmable GPU.

II. PROPOSED SYSTEM

In order to provide viewpoint invariance in interactive 3D,

we need to synthesize stereoscopic images corresponding to

eyes' viewpoint. The proposed system is shown in Fig. 1.

System consists of two major parts: 6D viewpoint parameter

extraction, and 6D Free-Viewpoint View Synthesis(FVVS).

The detail is shown below.

A. 6D Viewpoint Parameter Extraction

In 6D Viewpoint Parameter Extraction, both eyes' 3D

translation and 3D rotation (6D) viewpoint parameters are

extracted. We use 3D object tracking to extract both eyes' 3D

positions in space. Object tracking is initialized by face

recognition. Relative positions of both eyes are extracted.

After that, particle filter tracker continuously tracks the face

and find eyes' positions. Tracking observers in the particle

filter use both color and depth image to locate 3D position of

the face. The observation probability is generated by fusion the

probability for both image and depth trackers.

To derive 6D viewpoint parameters, we assume that user is

mostly looking at the screen. 3D rotation parameters is then

derived by calculating line of sight when user is looking at

screen center. Besides, view transformation parameters for

eyes and recording are different. The parameters are adjusted

in advance according to viewer's position and the actual

dimension of the display region.

To reduce the complexity of FVVS warping, we derive

warping matrixes with 6D viewpoint parameters in advance.

Warping requires per-pixel Homographic Transform (HT). To

reduce computation of HT matrices for every pixel, we save

the computed per-depth HT matrices and model them with

linear-interpolation (LI) scheme[6]. Furthermore, we project

the matrixes to each epipolar line. As a result, original

complex HT computations are simplified as computing

bilinear equation.

B. Real-time 6D Free-Viewpoint Virtual View Synthesis

Since the user's viewpoint may change dynamically, we

need to synthesize the image according to detected user

viewpoint at real-time. FVVS[1] uses complicated warping

technique. Two adjacent pixels in the reference view may be

warped to arbitrary distant positions in the virtual view

according to depth and epipolar geometry. Previous methods[4]

can only support 1D movement. Since the pixels along a

horizontal line in original view is not likely to lie along a

single horizontal line in synthesized view, fragment memory

access in this case will also reduce memory access efficiency.

To perform FVVS on real-time, we use several techniques

to reduce overhead of the algorithm and parallelize it on GPU,

as shown below:

1) Warping-based View Selection & Switching

In VSRS[2], multiple reference views are warped and

merged to generate one virtual view. This way is impractical

for real-time rendering, since the reference view number can

be quite high. Some test sequences have 100 views[5]. To

reduce the required views, we use a warping-based view

selection. Firstly, we try to detect occlusion regions from depth

discontinuous points. If two adjacent pixels in the reference

view maps to a large region in virtual view, we mark it as an

occlusion region. For the occlusion region, we will switch to

the reference that mapped to a slight larger region for the same

 iSense3D: A Real-Time Viewpoint-Aware 3D Video Synthesis

System

Sung-Fang Tsai, Pei-Kuei Tsung, Kuan-Yu Chen, Chung-Te Li, Member, IEEE, and Liang-Gee Chen,

Fellow, IEEE, Graduate Institute of Electronics Engineering, National Taiwan University

2012 IEEE International Conference on Consumer Electronics (ICCE) 1569495241

978-1-4577-0231-0/12/$26.00©2012 IEEE 465

position. This method would cover the occlusion.

2) Epipolar Stripe-based Rendering

Warping algorithm in VSRS [2] requires a depth frame

buffer. To reduce the required buffer, we use epipolar

geometry. Depth buffer access is localized to a single line by

rendering along the epipolar lines. However, the epipolar lines

are neither horizontal nor parallel to each other. That results in

fragment memory transactions and makes line buffering

difficult. To make it performable, we proposed a epipolar

stripe-based rendering. The rendering scheme is shown in Fig.

2(a). Workload is divided into stripes with the limited

maximum height. The required buffer is allocated with

maximum height. Data input and output is performed block by

block and buffered on-chip. Since the data access is block-

based, the fragment access problem is reduced.

3) Parallel Depth Test Algorithm with Weak Execution

Ordering

View warping conflicts may occur if multiple pixels with

different depth warped to the same position. Our previous

work[4] uses parallel algorithm to avoid conflict. Since the

conflict is not frequently happened, we propose a faster depth

test algorithm based on weak execution ordering. Simple

synchronous write-and-check is done iteratively until the depth

is equal or larger than current depth. Actual color filling is

done afterwards.

4) Depth-based Inpainting with Hierarchical Hole Map

After the warping, the unfilled occlusion regions are fixed

by depth-based inpainting. To reduce redundant scanning of

the whole frame, a hierarchical hole map is used as shown in

Fig. 2(b). Only the blocks marked as 'black' will be scanned in

detail.

Epipolar Stripe

Max.

Height

(b) Image with holes and the

corresponding Hierarchrical Hole Map

(a) Epipolar Stripe-based

Scheduling

Fig.2. Schemes for Epipolar Stripe-Based Rendering

III. IMPLEMENTATION RESULTS

The system is implemented on a 3D Notebook with a 4-

Core CPU and a programmable GPU. Color and image sensors

are connected to the notebook to track user's 6D viewpoint.

Traditional fixed disparity system will show strange motion

parallex when moving. By using 6D viewpoint parameter

extraction, the system will adapt the synthesized images to

user's position, showing better 3D effects.

To evaluate the system performance, we compare our

system with ViSBD[3] and a software implementation based

on VSRS[2]. The performance comparison is shown in Table.

I. With proposed optimization techniques, the system can

achieve up to 30fps at 1280×720p. Real-time performance is

important since it guarantees fast response for user's movement

and provide holographic 3D effects during moving.
TABLE I

PERFORMANCE COMPARISON

Algorithm Average Performance

 VSRS-based implementation 407160 ms / frame

 ViSBD(*) 2953 ms / frame

 Proposed Algorithm 31 ms / frame

The ViSBD only works on 1D Parallel Multi-view sequences.

IV. CONCLUSION

This work presents iSense3D, a real-time viewpoint-aware

3D video synthesis system. By using 6D viewpoint parameter

extraction, we can find the user's viewpoint in 3D space and

synthesize the best view for the user. With the proposed real-

time optimization techniques, we demonstrate the usability of

free-viewpoint technology on consumer devices, enabling

more realistic 3D effects for many interactive 3D application.

REFERENCE

[1] MPEG-FTV Group, "Draft Report on Experimental Framework for 3D

Video Coding," in ISO/IEC JTC1/SC29/WG11 MPEG2010/N11273,

April. 2010.

[2] MPEG-FTV Group, "View synthesis reference software (VSRS) 3.0,"

in ISO/IEC JTC1/SC29/WG11, May 2009.

[3] Dong Tian and et al., "Improvements on view synthesis and ldv

extraction based on disparity (ViSBD 2.0)," in ISO/IEC

JTC1/SC29/WG11 MPEG2008/M15883, October 2008.

[4] Sung-Fang Tsai, Chao-Chung Cheng, Chung-Te Li, Liang-Gee Chen,

"A real-time 1080p 2D-to-3D video conversion system," IEEE

Transactions on Consumer Electronics, vol.57, no.2, pp.915-922, May

2011.

[5] M. Tanimoto, T. Fujii and K. Suzuki, "Multi-view depth map of Rena

and Akko & Kayo", ISO/IEC JTC1/SC29/WG11 M14888, Shenzhen,

China, October 2007.

[6] Pei-Kuei Tsung, et.al, "A 216fps 4096×2160p 3DTV set-top box SoC

for free-viewpoint 3DTV applications," 2011 IEEE International Solid-

State Circuits Conference (ISSCC), pp.124-126, 20-24 Feb. 2011.

`

6D

Parameter

Extraction

3D

Object

Tracking

View

Parameter

Projection

6D Viewpoint Parameter

Extraction (on CPU)

Stereo

Warping from

Multiview

Depth-based

Inpainting

(Hole Filling)

6D Free-viewpoint View Synthesis

(on GPU)

View Parameter Update

Input

Sequence

Invariance

for

Different

Viewpoint

3D

Display

Image /

Depth

Camera

Image
Depth

Fig. 1. iSense3D System Overview

466

